
Chapter 13. Strings

and Text Processing

In This Chapter

In this chapter we will explore strings. We are going to explain how they are

implemented in C# and in what way we can process text content.

Additionally, we will go through different methods for manipulating a text:

we will learn how to compare strings, how to search for substrings, how to

extract substrings upon previously settled parameters and last but not least

how to split a string by separator chars. We will demonstrate how to

correctly build strings with the StringBuilder class. We will provide a

short but very useful information for the most commonly used regular

expressions. We will discuss some classes for efficient construction of

strings. Finally, we will take a look at the methods and classes for achieving

more elegant and stricter formatting of the text content.

Strings

In practice we often come to the text processing: reading text files,

searching for keywords and replacing them in a paragraph, validating user

input data, etc… In such cases we can save the text content, which we will
need in strings, and process them using the C# language.

What Is a String?

A string is a sequence of characters stored in a certain address in memory.

Remember the type char? In the variable of type char we can record only

one character. Where it is necessary to process more than one character then

strings come to our aid.

In. NET Framework each character has a serial number from the Unicode

table. The Unicode standard is established in the late 80s and early 90s in

order to store different types of text data. Its predecessor ASCII is able to

record only 128 or 256 characters (respective ASCII standard with 7-bit or 8-

bit table). Unfortunately, this often does not meet user needs – as we can fit

in 128 characters only digits, uppercase and lowercase Latin letters and some

specific individual characters. When you have to work with text in Cyrillic or

other specific language (e.g. Chinese or Arabian), 128 or 256 characters are

extremely insufficient. Here is why .NET uses 16-bit code table for the

characters. With our knowledge of number systems and representation of

information in computers, we can calculate that the code table store 2^16 =

458 Fundamentals of Computer Programming with C#

65,536 characters. Some characters are encoded in a specific way, so it is

possible to use two characters of the Unicode table to create a new character

– the resulting signs exceed 100,000.

The System.String Class

The class System.String enables us to handle strings in C#. For declaring

the strings we will continue using the keyword string, which is an alias in

C# of the System.String class from .NET Framework. The work with string

facilitates us in manipulating the text content: construction of texts, text

search and many other operations.

Example of declaring a string:

string greeting = "Hello, C#";

We have just declared the variable greeting of type string whose content is
the text phrase "Hello, C#". The representation of the content in the string

looks closely to this:

H e l l o , C #

The internal representation of the class is quite simple – an array of

characters. We can avoid the usage of the class by declaring a variable of

type char[] and fill in the array’s elements character by character. However,

there are some disadvantages too:

1. Filling in the array happens character by character, not at once.

2. We should know the length of the text in order to be aware whether it

will fit into the already allocated space for the array.

3. The text processing is manual.

The String Class: Universal Solution?

The usage of System.String is not the ideal and universal solution –

sometimes it is appropriate to use different character structures.

In C# we there are other classes for text processing – we will become familiar

with some of them later in this chapter.

The type string is more special from other data types. It is a class and as

such it complies with the principles of object-oriented programming. Its

values are stored in the dynamic memory (managed heap), and the

variables of type string keeps a reference to an object in the heap.

Strings are Immutable

The string class has an important feature – the character sequences stored

in a variable of the class are never changing (immutable). After being

assigned once, the content of the variable does not change directly – if we try

Chapter 13. Strings and Text Processing 459

to change the value, it will be saved to a new location in the dynamic memory

and the variable will point to it. Since this is an important feature, it will be

illustrated later.

Strings and Char Arrays

Strings are very similar to the char arrays (char[]), but unlike them, they

cannot be modified. Like the arrays, they have properties such as Length,

which returns the length of the string and allows access by index. Indexing,

as it is used in arrays, takes indices from 0 to Length-1. Access to the

character of a certain position in a string is done with the operator []

(indexer), but it is allowed only to read characters (and not to write to them):

string str = "abcde";
char ch = str[1]; // ch == 'b'
str[1] = 'a'; // Compilation error!

ch = str[50]; // IndexOutOfRangeException

Strings – Simple Example

Let’s give an example for using variables from the type string:

string message = "This is a sample string message.";

Console.WriteLine("message = {0}", message);
Console.WriteLine("message.Length = {0}", message.Length);

for (int i = 0; i < message.Length; i++)
{

 Console.WriteLine("message[{0}] = {1}", i, message[i]);
}
// Console output:

// message = This is a sample string message.
// message.Length = 31
// message[0] = T

// message[1] = h
// message[2] = i
// message[3] = s

// …

Please note the string value – the quotes are not part of the text, they are

enclosing its value. The example demonstrates how to print a string, how to

extract its length and how to extract the character from which it is composed.

460 Fundamentals of Computer Programming with C#

Strings Escaping

As we already know, if we want to use quotes into the string content, we

must put a slash before them to identify that we consider the quotes

character itself and not using the quotation marks for ending the string:

string quote = "Book's title is \"Intro to C#\"";
// Book's title is "Intro to C#"

The quotes in the example are part of the text. They are added in the variable

by placing them after the escaping character backslash (\). In this way the

compiler recognizes that the quotes are not used to start or end a string, but

are a part of the data. Displaying special characters in the source code is

called escaping.

Declaring a String

We can declare variables from the type string by the following rule:

string str;

Declaring a string represents a variable declaration of type string. This is

not equivalent to setting a variable and allocating memory for it! With the

declaration we inform the compiler that the variable str will be used and the

expected type for it is string. We do not create a variable in the memory and

it is not available for processing yet (value is null, which means no value).

Creating and Initializing a String

In order to process the declared string variable, we must create it and

initialize it. Creating a variable of certain class (also known as instantiating)

is a process associated with the allocation of the dynamic memory area (the

heap). Before setting a specific value to the string, its value is null. This can

be confusing to the beginner programmers: uninitialized variables of type

string do not contain empty values, it contains the special value null – and

each attempt for manipulating such a string will generate an error (exception

for access to a missing value NullReferenceException)!

We can initialize variables in the following three ways:

1. By assigning a string literal.

2. By assigning the value of another string.

3. By passing the value of an operation which returns a string.

Setting a String Literal

Setting a string literal means to assign a predefined textual content to a

variable of type string. We use this type of initialization, when we know the

value that must be stored in the variable. Example for setting a string literal:

Chapter 13. Strings and Text Processing 461

string website = "http://www.wikipedia.org";

In this example we created the variable website with value the above stated

string literal.

Assigning Value of Another String

Assigning a value is equivalent to directing a string value or a variable to a

variable of type string. An example is the following code snippet:

string source = "Some source";
string assigned = source;

First, we declare and initialize the variable source. Then the variable

assigned takes the value of source. Since the string class is a reference

type, the text "Some source" is stored in the dynamic memory (heap) on an

address defined by the first variable.

In the second line we redirect the variable assigned to the same place, which

the other variable points to. In this way the two objects receive the same

address in dynamic memory and hence the same value.

The change of either variable will affect only itself because of the

immutability of the type string, as when a change occurs, a copy of the

changed string will be created. This is not true for the rest of the reference

types (the normal, mutable types) because with them the changes are made

directly in the address in memory and all references point to this changed

address.

Passing a String Expression

The third option to initialize a string is to pass the value of a string

expression or operation, which returns a string result. This can be a result

from a method, which validates data; adding together the values of a number

of constants and variables; transforming an existing variable, etc.

Example of an expression, which returns a string:

string email = "some@gmail.com";

HeapStack

string@42e816

source

Some source

string@42e816

assigned

462 Fundamentals of Computer Programming with C#

string info = "My mail is: " + email;
// My mail is: some@gmail.com

The info variable has been created from the concatenation of literals and a

variable.

Reading and Printing to the Console

Let’s now take a look at the ways of reading strings, entered by the user and

how we print strings to the console.

Reading Strings

Reading strings can be accomplished through the methods of the well-known

System.Console class:

string name = Console.ReadLine();

In this example we read from the console the input data through the method
ReadLine(). It waits for the user to input a value and to press [Enter]. After

pressing the [Enter] key the variable name will contain the input name typed

at the console (read from the keyboard).

What can we do after the variable has been created and it has a value itself?

We can use it, for example, in expressions with other strings, to pass it as a

method’s parameter, to write it in text documents, etc. First, we can write it

to the console in order to be sure that the data has been correctly read.

Printing Strings

Taking the data to the standard output is made also by the well-known class
System.Console:

Console.WriteLine("Your name is: " + name);

By using the method WriteLineſ…) we are getting the message "Your name

is: " followed by the value of the name variable. After the end of the message

a new line character is added. If we want to run away from the new line,

which means the messages will appear at one and the same line then we use

the method, Writeſ…ƀ.

We can refresh our knowledge on the System.Console class from the chapter

"Console Input and Output".

Strings Operations

After getting familiar with the strings semantics and how we can create and

print them, next comes to learn how to deal with them and how to process

Chapter 13. Strings and Text Processing 463

them. The C# language gives us a number of operations ready for use, which

we will use for manipulating the strings.

Comparing Strings in Alphabetical Order

There are many ways to compare strings and depending on what exactly

we need in the particular case, we can take advantage of the various features

of the string class.

Comparison for Equality

If the requirements are to compare the two strings in order to determine

whether their values are equal or not, the most convenient method is the

Equalsſ…ƀ, which works equivalently to the operator ==. It returns a

Boolean result with either true value, if the strings have the same values, or

false value, if they are different. The method Equalsſ…ƀ checks letter by

letter for equality of string values, as it makes distinction between small and

capital letters, i.e. comparing the "c#" and "C#" with the Equalsſ…ƀ method

will return the value false. Consider the following example:

string word1 = "C#";
string word2 = "c#";
Console.WriteLine(word1.Equals("C#"));

Console.WriteLine(word1.Equals(word2));
Console.WriteLine(word1 == "C#");
Console.WriteLine(word1 == word2);

// Console output:
// True

// False
// True
// False

In practice, we often are interested of only the actual text content when

comparing two strings, regardless of the character casing (uppercase /

lowercase). To ignore the difference between small and capital letters in string

comparison we can use the method Equalsſ…ƀ with the parameter

StringComparison.CurrentCultureIgnoreCase. So now in the same

example of comparing "C#" with "c#" the method will return the value true:

Console.WriteLine(word1.Equals(word2,
 StringComparison.CurrentCultureIgnoreCase));
// True

StringComparison.CurrentCultureIgnoreCase is a constant of the

enumerated type StringComparison. What is enumerated type and how we

can use it, we will learn in the chapter "Defining Classes".

464 Fundamentals of Computer Programming with C#

Comparing Strings in Alphabetical Order

It has become clear how we compare strings for equality, but how we are

going to establish the lexicographical order of several strings? If we try to

use the operators < and > which work great for comparing numbers, we find

out that they cannot be used for strings.

If you want to compare two words and get information which one of them is

before the other according to their alphabetical order of letters, here comes

the method CompareToſ…ƀ. It allows us to compare the values of two strings

in order to determine their lexicographical order. In order two strings to have

the same values, they must have the same length (number of characters) and

the all their characters should match accordingly. For example, the strings

"give" and "given" are different because they differ in their lengths, and

"near" and "fear" differ in their first character.

The method CompareToſ…ƀ from the String class returns a negative value, 0

or positive value depending on the lexical order of the two compared strings.

A negative value means that the first string is lexicographically before the

second, zero means that the two strings are equal and positive value means

that the second string is lexicographically before the first. To clarify better

how to compare strings lexicographically, let’s go through a few examples:

string score = "sCore";
string scary = "scary";

Console.WriteLine(score.CompareTo(scary));
Console.WriteLine(scary.CompareTo(score));

Console.WriteLine(scary.CompareTo(scary));

// Console output:

// 1
// -1
// 0

The first experiment is called the method CompareToſ…ƀ of the string score,

as passed parameter is the variable scary. The first digit returns equal sign.

Because the method does not ignore the casing of small and capital letters,

it finds mismatch in the second character (in the first string it is "C", while in

the second it is "c"). This is enough to determine the arrangement of strings

and CompareToſ…ƀ returns +1. Calling the same method with swapped places

of the strings returns -1, because then the starting point is the string scary.

His final call returns a logical 0, because we compare scary with itself.

If we have to compare the strings lexicographically, namely to ignore

the letters casing, then we could use string.Compare(string strA,

string strB, bool ignoreCase). This is a static method, which works in the

same way as CompareToſ…ƀ, but it has an ignoreCase option for ignoring the

casing of capital and small letters. Let’s look at the method in action:

Chapter 13. Strings and Text Processing 465

string alpha = "alpha";
string score1 = "sCorE";
string score2 = "score";

Console.WriteLine(string.Compare(alpha, score1, false));
Console.WriteLine(string.Compare(score1, score2, false));

Console.WriteLine(string.Compare(score1, score2, true));
Console.WriteLine(string.Compare(score1, score2,
 StringComparison.CurrentCultureIgnoreCase));

// Console output:
// -1
// 1
// 0

// 0

In the last example the method Compareſ…ƀ takes as a third parameter

StringComparison.CurrentCultureIgnoreCase – already well-known from

the method Equalsſ…ƀ through which we can also compare strings, without

having to register the difference between the small and capital letters.

Please note that according to the methods Compareſ…ƀ and CompareToſ…ƀ

the small letters are lexicographically before the capital ones. The

correctness of this rule is quite controversial as in the Unicode table the

capital letters are before the small ones. For example due to the standard

Unicode, the letter “A” has a code 65, which is smaller than the code of the

letter “a” (97).

When you want just to consider whether the values of two

strings are equal or not, please use the method Equalsſ…ƀ or

the operator ==. The methods CompareToſ…ƀ and string.
Compareſ…ƀ are designed to be used when the lexicographical

order is needed.

Therefore, you should consider that the lexicographical comparison does

not follow the letter arrangement in the Unicode table. Other

abnormalities can also be caused by special features of the current culture.

For some languages like German the characters "ss" and "ß" are considered

equal. For example the words "Straße" and "Strasse" are considered the same

by CompareToſ…ƀ and equal when compared through the == operator:

string first = "вtraße";
string second = "Strasse";

Console.WriteLine(first == second); // False
Console.WriteLine(first.CompareTo(second)); // 0 – equal strings

466 Fundamentals of Computer Programming with C#

The == and != Operators

In the C# language the operators == and =! work for strings through an

internal calling of Equalsſ…ƀ. We will go through some examples for using

those two operators with variables from the string type:

string str1 = "Hello";
string str2 = str1;

Console.WriteLine(str1 == str2);
// Console output:

// True

The comparison of matching strings str1 and str2 returns true. This is a

fully expected result, since the target variable str2 is pointed to the dynamic

memory that is reserved for the variable str1. Thus, both variables have the

same address and the check for equality returns true. Presented is how the

memory looks like with the two variables:

Let’s look at another example:

string hel = "Hel";

string hello = "Hello";
string copy = hel + "lo";

Console.WriteLine(copy == hello);
// True

Pay attention to the comparison between the strings hello and copy. The

first variable takes directly the value "Hello". The second takes its value as a

result of joining a variable with literal, and the final result is equivalent to the

value of the first variable. At this stage the two variables point to different

areas of memory, but the contents of the memory blocks are identical. The

comparison made with the operator == returns a result true, although both

variables point to different areas of memory.

Here is how the memory looks like at this point:

HeapStack

string@8a4fe6

str1

Hello

string@8a4fe6

str2

Chapter 13. Strings and Text Processing 467

Memory Optimization for Strings (Interning)

Let’s consider the following example:

string hello = "Hello";

string same = "Hello";

Let’s create a variable with value "Hello". We also create a second variable

assigning it a value the same literal. It is logical when creating the variable

hello, to allocate space in the heap, to write its value and the variable to

point to that location. When creating the same a new place to record should be

allocated too, the value should be written and the reference to the memory

should be directed.

But the truth is that there is an optimization in the C# compiler and in CLR,

which saves the memory from creating duplicated strings. This

optimization is called strings interning and thanks to it the two variables in

the memory will be pointed to the same common block of memory. This

reduces the memory space usage and optimizes certain operations such as

comparing two completely matching strings. They are written in the memory

in the following way:

When we initialize a variable of type string with a string literal, the memory

checks invisibly for us whether this value already exists. If the value already

exists, the new variable is simply pointed to it. If not, a new block of memory

is allocated, the value is stored in it and the reference is changed to point to

HeapStack

string@6e278a

hel

Hel

string@2fa8fc

hello

Hello

string@a7b46e

copy

Hello

HeapStack

string@a8fe24

hello

Hello

string@a8fe24

same

468 Fundamentals of Computer Programming with C#

the new block. The string interning in .NET is possible because strings are

immutable by design and it is not likely that the memory block referenced

by several string variables will simultaneously be changed by someone.

When not initializing the strings with literals, no interning is used. However, if

we want to use interning specifically, we can make it through the use of the

method Internſ…ƀ:

string declared = "Intern pool";

string built = new StringBuilder("Intern pool").ToString();
string interned = string.Intern(built);

Console.WriteLine(object.ReferenceEquals(declared, built));
Console.WriteLine(object.ReferenceEquals(declared, interned));
// Console output:

// False
// True

Here is the memory situation at this moment:

In the example we used the static method Object.ReferenceEqualsſ…ƀ,

which compares two objects in memory and returns whether they point to the

same memory block. We used the class StringBuilder, which serves to

efficiently build strings. When and how to use StringBuilder we will explain

in details shortly, but now let’s get familiar with the basic operations on

strings.

Operations for Manipulating Strings

Once we got familiar with the fundamentals of strings and their structure, the

next thing to explore are the tools for their processing. We will review string

concatenation, searching in a string, extracting substrings, change the

character casing, splitting a string by separator and other string operations

that will help us solve various problems from the everyday practice.

HeapStack

string@6e278a

declared

Intern pool

string@6e278a

interned

string@a7b46e

built

Intern pool

Chapter 13. Strings and Text Processing 469

Strings are immutable! Any change of a variable of type

string creates a new string in which the result is stored.

Therefore, operations that apply to strings return as a result

a reference to the result.

It is possible to process strings without creating new objects in the memory

every time a modification is made but for this purpose the class

StringBuilder should be used. We will introduce it a bit later.

Strings Concatenation

Gluing two strings and obtaining a new one as a result is called

concatenation. It could be done in several ways: through the method

Concatſ…ƀ or with the operators + and +=.

Example of using the method Concatſ…ƀ:

string greet = "Hello, ";
string name = "reader!";

string result = string.Concat(greet, name);

By calling the method, we will concatenate the string variable name, which is

passed as an argument, to the string variable greet. The result string will be

the text "Hello, reader!".

The second way for concatenation is via the operators + and +=. Then the

above example can be implemented in the following way:

string greet = "Hello, ";
string name = "reader!";

string result = greet + name;

In both cases those variables will be presented in the memory as follows:

HeapStack

0x00122F680

greet

Hello,

0x003456FF

name

reader!

0x00AD4934

result

Hello, reader!

470 Fundamentals of Computer Programming with C#

Please note that string concatenation does not change the existing strings

but returns a new string as a result. If we try to concatenate two strings

without storing them in a variable, the changes would not be saved. Here is a

typical mistake:

string greet = "Hello, ";
string name = "reader!";
string.Concat(greet, name);

In the given example the two variables are concatenated but the result of it

has not been saved anywhere, so it is lost:

If we want to add a value to an existing variable, for example the variable

result, we can do it with the well-known code:

result = result + " How are you?";

In order to avoid the double writing of the above declared variable, we can

use the operator +=:

result += " How are you?";

The result will be the same in both cases: "Hello, reader! How are you?".

We can concatenate other data with strings. Any data, which can be

presented in a text form, can be appended to a string. Concatenation is

possible with numbers, characters, dates, etc. Here is an example:

string message = "The number of the beast is: ";
int beastNum = 666;
string result = message + beastNum;

// The number of the beast is: 666

As we understood from the above example, there is no problem in

concatenating strings with other data, which is not from a string type. Let’s
have another full example for string concatenation:

public class DisplayUserInfo

{
 static void Main()
 {

 string firstName = "John";
 string lastName = "Smith";
 string fullName = firstName + " " + lastName;

 int age = 28;
 string nameAndAge = "Name: " + fullName + "\nAge: " + age;

Chapter 13. Strings and Text Processing 471

 Console.WriteLine(nameAndAge);
 }

}
// Console output:
// Name: John Smith

// Age: 28

Switching to Uppercase and Lowercase Letters

Sometimes we need to change the casing of a string so that all the

characters in it to be entirely uppercase or lowercase. The two methods

that would work best in this case are ToLowerſ…ƀ and ToUpperſ…ƀ. The first

converts all capital letters to small ones:

string text = "All Kind OF LeTTeRs";

Console.WriteLine(text.ToLower());
// all kind of letters

The example shows that all capital letters of the text change their casing and

the entire text goes in lowercase. Such a shift to lowercase is convenient for

storing usernames in various online systems. Upon registration the users may

use a mixture of uppercase and lowercase letters, but the system can then

make them all small to unify them and to avoid matches on points with

differences in the casing.

Here is another example. We want to compare entered by the user input but

we are not sure exactly how it was written – in small or capital letters or

mixed. One possible approach is to standardize capitalization and compare it

with the constant defined by us. Thus, we make no distinction of small

and capital letters. For example, if we have a user input panel where we

enter name and password and it does not matter if the password is written

with capital letters or small, we can make a similar check on the password:

string pass1 = "PasswoRd";
string pass2 = "PaSSwoRD";
string pass3 = "password";

Console.WriteLine(pass1.ToUpper() == "PASSWORD");
Console.WriteLine(pass2.ToUpper() == "PASSWORD");

Console.WriteLine(pass3.ToUpper() == "PASSWORD");

// Console output:

// True

472 Fundamentals of Computer Programming with C#

// True
// True

In the example we are comparing three passwords with the same content but

with a different casing. When checking their contents, always verify if it

equals to the string "PASSWORD" (letter by letter). Of course, we could do

the above verification and by the method Equalsſ…ƀ in the version with

ignoring the character casing, which we already discussed.

Searching for a String within Another String

When we have a string with a specified content, it is often necessary to

process only a part of its value. The .NET platform provides us with two

methods to search a string within another string: IndexOfſ…ƀ and

LastIndexOfſ…ƀ. They search into the string and check whether the passed

as a parameter substring occurs in its content. The result of those methods is

an integer. If the result is not a negative value, then this is the position where

the first character of the substring is found. If the method returns value of -1,

it means that the substring was not found. Remember that in C# indexing

into strings start from 0.

The methods IndexOfſ…ƀ and LastIndexOfſ…ƀ search the contents of the

text sequence, but in a different direction. The search with the first method

starts from the beginning of the string towards the end, while the second

method – the search is done backwards. If we are interested in the first

encountered match, then we use IndexOfſ…ƀ. If we want to search the string

from its end (for example to detect the last dot in a file name or the last slash

in an URL address), then we use LastIndexOfſ…ƀ.

When calling IndexOfſ…ƀ and LastIndexOfſ…ƀ a second parameter could be

passed, which will specify the position, which the searching should start from.

This is useful if we want to search part of a string, not the entire string.

Searching into a String – Example

Let’s consider an example with the IndexOfſ…ƀ method:

string book = "Introduction to C# book";

int index = book.IndexOf("C#");

Console.WriteLine(index);

// index = 16

In the example, the variable book has a value "Introduction to C# book".

The search for the substring "C" in this variable will return the value 16,

because the substring will be found and the first character "C" of the searched

word is in 16th position.

Chapter 13. Strings and Text Processing 473

Searching with IndexOf(…) – Example

Let’s look into great details one more example for searching for a separate

characters or strings in a text:

string str = "C# Programming Course";

int index = str.IndexOf("C#"); // index = 0
index = str.IndexOf("Course"); // index = 15

index = str.IndexOf("COURSE"); // index = -1
index = str.IndexOf("ram"); // index = 7
index = str.IndexOf("r"); // index = 4

index = str.IndexOf("r", 5); // index = 7
index = str.IndexOf("r", 10); // index = 18

Look how the string we are searching looks like in the memory:

If we look at the results of the third search, we will note that the search for

the word "COURSE" in the text returned a result of -1, i.e. no match has

been found. Although the word is in the text, it has been written in a different

case of letters. The methods IndexOfſ…ƀ and LastIndexOfſ…ƀ distinguish

between uppercase and lowercase letters. If we want to ignore this difference,

we can write text in a new variable and turn it to a text with entirely lower or

entirely uppercase, and then we can perform the search in it, independently

from the letters casing.

Finding All Occurrences of a Substring – Example

Sometimes we want to find all occurrences of a particular substring

within another string. Using both methods with only one searched string

passed as an argument would not work for us, because it will always return

only the first occurrence of the substring. We can pass a second parameter for

an index that indicates the starting position from which the searching should

begin. Of course, we need to loop through it in order to move from the first

occurrence of the searched string to the next, to the next, and the next, etc.,

until the last one.

Here is an example how we can use the method IndexOfſ…ƀ by a given word

and start index: finding all occurrences of the word "C#" in a given text:

string quote = "The main intent of the \"Intro C#\"" +
 " book is to introduce the C# programming to newbies.";

HeapStack

string@821a48

str

C # P r o g r a m m i n g C o u r s e

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 20 21

474 Fundamentals of Computer Programming with C#

string keyword = "C#";
int index = quote.IndexOf(keyword);

while (index != -1)
{
 Console.WriteLine("{0} found at index: {1}", keyword, index);

 index = quote.IndexOf(keyword, index + 1);
}

The first step is to make a search for the keyword "C#". If the word is found

in the text (i.e. the returned value is different than -1), it prints it on the

console and we continue our search rightwards, starting from the position on

which we have found the word plus one. We repeat this operation until

IndexOfſ…ƀ returns value -1.

Note: If we miss setting an initial index, then the search will always start from

the beginning and will return one and the same value. This will lead to

hanging of the program. If we search directly from the index without

adding plus one each time, we will come across again and again to the last

result, whose index we have already found. Therefore, proper search of the

next result should start from a starting position index + 1.

Extracting a Portion of a String

For now we know how to check whether a substring occurs in a text and

which are the occurrence positions. But how can we extract a portion of a

string in a separate variable?

The solution of this problem is the method Substringſ…ƀ. By using it, we can

extract a part of the string (substring) by a given starting position in the

text and its length. If the length is omitted, a portion from the text will be

extracted, starting from the initial position to the string’s end.

Presented is an example of extracting a substring from a string:

string path = "C:\\Pics\\CoolPic.jpg";
string fileName = path.Substring(8, 7);

// fileName = "CoolPic"

We manipulate the variable path. It contains the path to a file from our file

system. To assign the file name to a new variable, we use Substring(8, 7)

and take a sequence of 7 characters starting from the 8th position, i.e.

character positions from 8 to 14 inclusively.

Calling the method Substring(startIndex, length), extracts a

substring from a string, which is located between startIndex

and (startIndex + length – 1) inclusively. The character at

Chapter 13. Strings and Text Processing 475

the position startIndex + length is not taken into considera-

tion! For example, if we point Substring(8, 3), the characters

between index 8 and 10 inclusively will be extracted.

Here are presented the characters, which form the text from which we extract

a substring:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

C : \ P i c s \ C o o l P i c . j p g

Sticking to the scheme, the method that has been called must write the

characters from the positions 8 to 14 (as the last index is not included),

namely "CoolPic".

Extracting a File Name and File Extension – Example

Let’s consider a more interesting task. How can we print the filename and

its extension from given full path to a file in Windows-based file system? As

we know how the path is recorded in the file system, we can proceed with the

following plan:

- Looking for the last backslash in the text;

- Keeping the position of the last backslash;

- Extracting the substring starting from the obtained position +1;

Let’s consider again the example of the well-known file path. If we have no

information about the exact contents of the variable, but we know that it

contains a file path, we can stick to the above scheme:

string path = "C:\\Pics\\CoolPic.jpg";

int index = path.LastIndexOf("\\");
// index = 7
string fullName = path.Substring(index + 1);

// fullName = "CoolPic.jpg"

Splitting the String by a Separator

One of the most flexible methods for working with strings is Splitſ…ƀ. It

allows us to split a string by a separator or an array of possible separators.

For example, we can process a variable, which has the following content:

string listOfBeers = "Amstel, Heineken, Tuborg, Becks";

How can we split each beer in a separate variable or extract all beers in an

array? At first glance it may seem difficult – we must seek with IndexOfſ…ƀ

for a special character, then to extract a substring with Substringſ…ƀ, to

476 Fundamentals of Computer Programming with C#

iterate all this in a loop and to write the result in a variable. Since the splitting

of a string by a separator is a main task of text processing, ready to use

methods for it can be found in .NET Framework.

Splitting Strings by Multiple Separators – Example

The easiest and more flexible method for resolving this issue is the following:

char[] separators = new char[] {' ', ',', '.'};
string[] beersArr = listOfBeers.Split(separators);

Using the built-in functionality of the method Splitſ…ƀ from the class String,

we will split the contents of a given string by array of characters – separators,

which are passed as an argument of the method. All substrings among which

are space, comma or dot will be removed and stored in the beersArr array.

If we iterate the array and print its elements one by one, the result will be:

"Amstel", "", "Heineken", "", "Tuborg", "" and "Becks". We get 7 results,

instead of the expected 4. The reason is that during the text splitting, three

substrings are found which contain two separator characters one next to the

other (for example a comma, followed by a space). In this case the empty

string between the two separators is also part of the returned result.

How to Remove the Empty Elements after Splitting?

If we want to ignore the empty strings from the splitting results, one possible

solution is to make checks on their printing:

foreach (string beer in beersArr)
{

 if (beer != "")
 {
 Console.WriteLine(beer);

 }
}

But this approach does not remove the empty strings from the array. It just

does not print them. So we can change the arguments we are passing to the

method Splitſ…ƀ, by passing a special option:

string[] beersArr = listOfBeers.Split(
 separators, StringSplitOptions.RemoveEmptyEntries);

After this change, the beersArr array will contain 4 elements – the 4 words

from the listOfBeers variable.

When splitting strings and adding as a second parameter the

constant StringSplitOptions.RemoveEmptyEntries we instruct

Chapter 13. Strings and Text Processing 477

the method Splitſ…ƀ to work in the following way: “Return
all substrings from the variable that are split by given list of

separators. If you meet two or more neighboring separators,

consider them as one.”

Replacing a Substring

The text processing in .NET Framework provides ready methods for replacing

a substring with another. For example, if we have made one and the same

technical mistake when typing the email address of a user in an official

document, we can replace it by using the method Replaceſ…ƀ:

string doc = "Hello, some@gmail.com, " +
 "you have been using some@gmail.com in your registration.";

string fixedDoc =
 doc.Replace("some@gmail.com", "john@smith.com");
Console.WriteLine(fixedDoc);

// Console output:
// Hello, john@smith.com, you have been using

// john@smith.com in your registration.

As it can be seen from the example, the method Replaceſ…ƀ replaces all

occurrences of a given substring with another substring, not just the first.

Regular Expressions

The regular expressions are a powerful tool for text processing and allow

searching matches by a pattern. An example for a pattern is [A-Z0-9]+,

which means not an empty series of capital Latin letters and numbers.

Regular expressions make text processing easier and more accurate:

extracting some resources from texts, searching for phone numbers, finding

email addresses in a text, splitting all the words in a sentence, data

validation, etc.

Regular Expressions – Example

If we have an official document that is used only in the office and it contains a

lot of personal data, then we should censor it before sending it to the client.

For example, we can censor all mobile numbers and replace them with

asterisks. By using regular expressions, this could be done as follows:

string doc = "Smith's number: 0898880022\nFranky can be " +

 "found at 0888445566.\nSteven's mobile number: 0887654321";
string replacedDoc = Regex.Replace(
 doc, "(08)[0-9]{8}", "$1********");

478 Fundamentals of Computer Programming with C#

Console.WriteLine(replacedDoc);

// Console output:
// Smith's number: 08********

// Franky can be found at 08********.
// Steven' mobile number: 08********

Explaining the Arguments of Regex.Replace(…)

In the above code fragment by using a regular expression, we find all the

phone numbers specified in the text and replace them by a pattern. We use

the class System.Text.RegularExpressions.Regex, which is intended for

use with regular expressions in .NET Framework. The variable, which imitates

the document text, is doc. Several names of customers are recorded there. If

we want to protect the contacts from an improper use and wish to censor the

phone numbers, then we can replace all mobile phones with asterisks.

Assuming that the phones are saved in the following format: "08 + 8 digits",

the method Regex.Replaceſ…ƀ finds all matches by a given format and

replaces them with: "08********".

The regular expression that finds all of the numbers is the following: "(08)[0-
9]{8}". It finds all substrings in the text, constructed by the constant "08"

and followed exactly by 8 characters ranging from 0 to 9. The example can be

further improved by selecting the numbers only from a given mobile operator,

for phones on foreign networks, etc., but in this case we used the simplified

version.

The literal "08" is surrounded by parentheses. They serve for forming a

separate group in the regular expression. The groups can be used for handling

only a certain part of the expression instead of the entire expression. In our

example, the group is used in the substitution. Through it, the founded

matches are replaced by the pattern "$1********", i.e. the text which was

found in the first group of the regular expression ($1) + 8 consecutive

asterisks for censorship. As the defined group is always a constant (08), so

the text replaced will always be: 08 ********.

This chapter is not intended to explain in details how to use regular

expressions in .NET Framework, as it is a huge and complex field, but only

to turn the reader’s attention that the regular expressions exist and they are a

powerful tool for text processing. Anyone who wants to learn more, can

search for articles, books and tutorials in order to learn how to construct

regular expressions, how to look for matches, how validation is made, how to

make substitutions by patterns, etc. In particular, we recommend you to visit

the websites http://www.regular-expressions.info and http://regexlib.com.

More information about the classes in .NET Framework for working with

regular expressions can be found at: http://msdn.microsoft.com/en-

us/library/system.text.regularexpressions.regex%28VS.100%29.aspx.

http://www.regular-expressions.info/
http://regexlib.com/
http://msdn.microsoft.com/en-us/library/system.text.regularexpressions.regex%28VS.100%29.aspx
http://msdn.microsoft.com/en-us/library/system.text.regularexpressions.regex%28VS.100%29.aspx

Chapter 13. Strings and Text Processing 479

Removing Unnecessary Characters at the Beginning

and at the End of a String

When entering text in a file or to the console, you can find sometimes some

"parasitic" spaces (white-space) at the beginning or at the end of the text –

some other space or a tab that cannot be observed at first glance. This may

not be essential but if we do not validate the user data, there would be a

problem in terms of checking the contents of the input information. In order

to solve this problem we can use the method Trim(). It is responsible for

eliminating (trimming) the white spaces at the beginning or at the end of a

string. The white spaces can be spaces, tabs, line breaks etc.

Let’s assume in the variable fileData we have read the contents of a file

where is written a name of a student. There may have emerged parasitic

spaces when writing the text or reversing it from one format to another. In

that case the variable will look the following way:

string fileData = " \n\n David Allen ";

If we print the contents to the console, we get two blank lines followed by

some spaces, the requested name and some additional spaces at the end. We

can reduce the information just to the required name, in the following way:

string reduced = fileData.Trim();

When we print the information to the console for the second time, the content

will be "David Allen", without any unwanted white spaces.

Removing Unnecessary Characters by a Given List

The method Trimſ…ƀ can accept an array of characters, which we want to

remove from the string. We can make it in the following way:

string fileData = " 111 $ % David Allen ### s ";

char[] trimChars = new char[] {' ', '1', '$', '%', '#', 's'};
string reduced = fileData.Trim(trimChars);
// reduced = "David Allen"

Again, we get the desired result "David Allen".

Please note that we must list all the characters we want to

eliminate, including the empty spaces (spaces, tabs, new

line, etc.). Without a ' ' in the array trimChars, we would

not get the desired result!

If we want to remove the white spaces only at the beginning or in end of the

string, we can use the methods TrimStartſ…ƀ and TrimEndſ…ƀ:

480 Fundamentals of Computer Programming with C#

string reduced = fileData.TrimEnd(trimChars);
// reduced = " 111 $ % David Allen"

Constructing Strings: the StringBuilder Class

As explained above, strings in C# are immutable. This means that any

adjustments applied to an existing string do not change it but return a new

string. For example, using methods like Replaceſ…ƀ, ToUpperſ…ƀ, Trimſ…ƀ do

not change the string, which they are called for. They allocate a new area in

the memory where the new content is saved. This behavior has many

advantages but in some cases can cause performance problems.

Strings Concatenation in a Loop: Never Do This!

Serious performance problems may be encountered when trying to

concatenate strings in a loop. The problem is directly related to the strings

handling and dynamic memory, which is used to store them. To understand

why we have poor performance when concatenating strings in a loop,

we must first consider what happens when using operator "+" for strings.

How Does the String Concatenation Works?

We already got familiar with the ways to do string concatenation in C#. Let’s
now examine what happens in memory when concatenating strings.

Consider two variables str1 and str2 of type string, which have values of

"Super" and "Star". There are two areas in the heap (dynamic memory) in

which the values are stored. The task of str1 and str2 is to keep a reference

to the memory addresses where our data is stored. Let’s create a variable

result and give it a value of the other two strings by concatenation. A code

fragment for creating and defining the three variables would look like this:

string str1 = "Super";
string str2 = "Star";

string result = str1 + str2;

What will happen with the memory? Creating the variable result will allocate

a new area in dynamic memory, which will record the outcome of the str1 +
str2, which is "SuperStar". Then the variable itself will keep the address of

the allocated area. As a result we will have three areas in memory and three

references to them. This is convenient, but allocating a new area, recording a

value, creating a new variable and referencing it in the memory is time-

consuming process that would be a problem when repeated many times,

typically inside a loop.

Unlike other programming languages, in C# is not necessary to manually

dispose the objects stored in memory. There is a special mechanism called a

garbage collector (memory cleaning system), which takes care of

clearing the unused memory and resources. The garbage collector is

Chapter 13. Strings and Text Processing 481

responsible for disposing of objects in dynamic memory when they are no

longer used. Creation of many objects containing multiple references in

dynamic memory is bad, because it fills memory and then the garbage

collector is automatically enforced to start execution. It takes quite some time

and slows the overall performance of the process. Furthermore,

transferring characters from one place to another in memory (when string

concatenation is executed) is slow, especially if the strings are long.

Why Concatenating Strings in a Loop is a Bad Practice?

Assume that we have a task to store the numbers from 1 to 20,000

consecutively to each other in a variable of type string. How can we solve

the problem with our already existing knowledge? One of the easiest ways for

implementation is to create a variable that stores the numbers and execute a

loop from 1 to 20,000 in which each number is concatenated to the variable.

Implemented in C#, the solution would look like this:

string collector = "Numbers: ";
for (int index = 1; index <= 20000; index++)
{

 collector += index;
}

Execution of the above code will loop 20,000 times and after each iteration

will add the current index to the collector variable. collector’s value after

implementation would be: "Numbers: 12345678910111213141516…" (the

numbers from 17 to 20,000 are replaced with dots because we don’t have the

space to write something that long here).

Probably you have not noticed the delay in the fragment’s execution. Indeed,

using concatenation in the loop has delayed significantly the normal

calculation process. On an average PC (as of January 2012) the loop iteration

takes 1-2 seconds. The user of our program would be very skeptical if he

has to wait a few seconds for something so simple such as concatenating the

numbers from 1 to 20,000. Moreover, in this case 20,000 is just an example

endpoint. What will be the delay if instead of 20,000 the user needs to

concatenate numbers to 200,000? Try it!

Concatenating in Loop of 200,000 Iterations – Example

Let’s develop further the example above. First, we will change the endpoint of

the loop from 20,000 to 200,000. Second, in order to account properly the

execution time, we will display on the console the current date and time

before and after execution of the loop. Third, to see whether the variable

contains the desired value, we will also display part of it on the console. If you

want to make sure that the whole value is stored, you can remove the

method Substringſ…ƀ, but the print itself in this case will take a long time.

The final version of the example would look like this:

482 Fundamentals of Computer Programming with C#

class SlowNumbersConcatenator
{
 static void Main()

 {
 Console.WriteLine(DateTime.Now);

 string collector = "Numbers: ";
 for (int index = 1; index <= 200000; index++)
 {

 collector += index;
 }

 Console.WriteLine(collector.Substring(0, 1024));
 Console.WriteLine(DateTime.Now);
 }

}

When executing the example implementation on the console, the program

starting date and time, the first 1024 characters of the variable and program

completion date and time are displayed on the console. The reason to show

only the first 1024 characters is that we want to measure only the calculation

time without the time for printing the results. Printing the whole result will be

time consuming. Let’s see sample output from the execution:

Program start is marked with a green line and its end – with red. Note the

execution time – about 5-6 minutes (on our computer from January 2012)!

Such a delay is unacceptable for such a task and will not only make the user

nervous but will make him stop the program without waiting for it to end.

Chapter 13. Strings and Text Processing 483

Processing Strings in the Memory

The problem with time-consuming Loop processing is related to the way

strings work in memory. Each iteration creates a new object in the heap and

point the reference to it. This process requires a certain physical time.

Several things happen at each step:

1. An area of memory is allocated for recording the next number

concatenation result. This memory is used only temporarily while

concatenating, and is called a buffer.

2. The old string is moved into the new buffer. If the string is long (say

500 KB, 5 MB or 50 MB), it can be quite slow!

3. Next number is concatenated to the buffer.

4. The buffer is converted to a string.

5. The old string and the temporary buffer become unused. Later they are

destroyed by the garbage collector. This may also be a slow

operation.

Much more elegant and appropriate way to concatenate strings in a Loop is

using the StringBuilder class. Let’s see how it works.

Building and Changing Strings with StringBuilder

StringBuilder is a class that serves to build and change strings. It

overcomes the performance problems that arise when concatenating

strings of type string. The class is built in the form of an array of characters

and what we need to know about it is that the information in it can be freely

changed. Changes that are required in the variables of type StringBuilder,

are carried out in the same area of memory (buffer), which saves time and

resources. Changing the content does not create a new object but simply

changes the current.

Let’s rewrite the code above in which we concatenated strings in a loop. If you

remember, the operation previously took 5 minutes. Let’s measure how long

will take the same operation if we use StringBuilder:

class ElegantNumbersConcatenator

{
 static void Main()
 {

 Console.WriteLine(DateTime.Now);

 StringBuilder sb = new StringBuilder();

 sb.Append("Numbers: ");

 for (int index = 1; index <= 200000; index++)

484 Fundamentals of Computer Programming with C#

 {
 sb.Append(index);
 }

 Console.WriteLine(sb.ToString().Substring(0, 1024));
 Console.WriteLine(DateTime.Now);

 }
}

This example is based on the previous one, with only minor adjustments.

Return value is the same, but what about the execution time?

The time required to concatenate 200,000 characters with StringBuilder is

now less than a second (perhaps few milliseconds)!

Reversing a String – Example

Consider another example: we want to reverse an existing string

(backwards). For example, if we have the string "abcd", the returned result

should be "dcba". We get the original string, iterate it backwards character by

character and add each character to a variable of type StringBuilder:

public class WordReverser
{
 static void Main()

 {
 string text = "EM edit";
 string reversed = ReverseText(text);

Chapter 13. Strings and Text Processing 485

 Console.WriteLine(reversed);

 // Console output:

 // tide ME
 }

 static string ReverseText(string text)
 {
 StringBuilder sb = new StringBuilder();

 for (int i = text.Length - 1; i >= 0; i--)
 {
 sb.Append(text[i]);
 }

 return sb.ToString();
 }
}

In this example we have a variable text, which contains the value "EM edit".

We pass the variable to the ReverseTextſ…ƀ method and set the new value in

a variable named reversed. The method, in turn, iterates the characters of

the variable in reverse order and stores them in a new variable of type

StringBuilder, but now back ordered. Ultimately, the result is "tide ME".

How Does the StringBuilder Class Work?

The StringBuilder class is an implementation of a string in C#, but different

than the class String. Unlike the already familiar for us strings, the objects of

the StringBuilder class are not immutable, namely edit operations do not

require creating a new object in the memory. This reduces the

unnecessary transfer of data in memory when performing basic operations

such as string concatenation.

StringBuilder keeps a buffer with a certain capacity (16 characters by

default). The buffer is implemented as an array of characters that is provided

to the developer by a user-friendly interface – methods that quickly and easily

add and edit elements of the string. At any moment part of the characters in

the buffer are used and the rest stay in reserve. This allows the addition to

work very quickly. Other operations also operate faster than the class string,

because the changes do not create a new object.

Once the internal buffer of the StringBuilder is full, it automatically is

doubled (the internal buffer is resized to increase its capacity while its content

is kept unchanged). Resizing is a slow operation but is happens rarely so

the total performance is good. We will discuss this in more details in the

chapter about "Algorithms Complexity".

486 Fundamentals of Computer Programming with C#

Let’s create an object of the StringBuilder class with 15 characters long

buffer. We add the string: "Hello, C#!" to it and we get the following code:

StringBuilder sb = new StringBuilder(15);

sb.Append("Hello, C#!");

After creating the object and storing the value in it, the StringBuilder will

look as follows:

Colored elements are the filled with our content part of the buffer. Normally,

adding a new character to the variable does not create a new object in the

memory but use the already allocated and unused space. If the entire

capacity of the buffer is filled, then the buffer is doubled as we already

explained.

StringBuilder – More Important Methods

The StringBuilder class provides us with a set of methods that help us to

easily and efficiently edit text data and construct text. We met some of them

in the examples. The most important are:

- StringBuilder(int capacity) – constructor with an initial capacity

parameter. It may be used to set the buffer size in advance if we have

estimates of the number of iterations and concatenations, which will be

performed. This way we can save unnecessary dynamic memory

allocations.

- Capacity – returns the buffer size (total number of used and unused

positions in the buffer).

- Length – returns length of string saved in the variable (number of used

positions in the buffer)

- Indexer [int index] – return the character stored in given position.

- Appendſ…ƀ – appends string, number or other value after the last

character in the buffer.

- Clearſ…ƀ – removes all characters from the buffer (deletes it).

- Remove(int startIndex, int length) – removes (deletes) string from

the buffer with a given start position and length.

Chapter 13. Strings and Text Processing 487

- Insert(int offset, string str) – inserts a string in a given start

position (offset).

- Replace(string oldValue, string newValue) – replaces all occurren-

ces of a given substring with another substring.

- ToString() – returns the StringBuilder object content as a string

object.

Extracting All Capital Letters from a Text – Example

The next task is to extract all capital letters from a text. We can

implement it in different ways – using an array, counter and filling the array

with all capital letters found; creating an object of type string and

concatenate capitals one by one to it; using the class StringBuilder.

Turning to the option of using an array, we have a problem: we do not know

what will be array size, as we have no idea in advance how many are the

capital letters in the text. We can create an array as large as the text, but

thus wasting unnecessary space in memory and we must also maintain a

counter that keeps where the array is full to.

Another option is to use a variable of type string. As we will iterate the

whole text and concatenate all capital letters to the variable, probably we will

lose efficiency again due to the strings concatenation.

StringBuilder: the Right Solution

The most viable solution to the task again is to use StringBuilder. We can

start with an empty StringBuilder, iterate the letters of the given text

character by character, verify that the current character is uppercase and

concatenate the character at the end of our StringBuilder. Finally, we can

return the final result by calling the ToString() method. Below is a sample

implementation:

public static string ExtractCapitals(string str)
{
 StringBuilder result = new StringBuilder();

 for (int i = 0; i < str.Length; i++)
 {
 char ch = str[i];

 if (char.IsUpper(ch))
 {
 result.Append(ch);

 }
 }
 return result.ToString();

}

488 Fundamentals of Computer Programming with C#

Calling ExtractCapitalsſ…ƀ method and passing a specified text as a

parameter to it, the return value is a string of all capital letters in the text,

namely the initial string without all characters that are not capitalized. To

check whether a character is uppercase we are using char.IsUpperſ…ƀ – a

method from the standard .NET classes. You can view the char class

documentation, because it offers other useful methods for handling

characters.

String Formatting

.NET Framework provides the developer with mechanisms for formatting

strings, numbers and dates. We have already met some of them in the

chapter "Console Input and Output". Now we will extend our knowledge with

methods for formatting and converting strings of the string class.

The ToString(…) Method

One of the interesting concepts in .NET is that practically every object of a

class and primitive variables can be presented as text. This is done by the

method ToStringſ…ƀ, which is present in all .NET objects. It is implicit in the

definition of the object class – the base class that all .NET data types inherit

directly or indirectly. Thus the definition of the method appears in each class

and we can use it to bring the content of each object in some text form.

The method ToStringſ…ƀ is called automatically when we print objects from

different classes to the console. For example, when printing dates the

submitted date is converted to text by calling the ToStringſ…ƀ:

DateTime currentDate = DateTime.Now;
Console.WriteLine(currentDate);

// Output: 01.02.2012 13:34:27 (depends on the culture settings)

When we pass currentDate as a parameter of the WriteLineſ…ƀ method, we

don’t have an accurate statement that handles dates. The method has a

particular implementation for all primitive types and strings. For all other

objects WriteLineſ…ƀ calls their ToStringſ…ƀ method, which first converts

them to text and then displays the resulting text content. In fact, the sample

code above is equivalent to the following:

DateTime currentDate = DateTime.Now;

Console.WriteLine(currentDate.ToString());

The default implementation of the ToStringſ…ƀ method in the object class

returns the full name of the class. All classes that do not explicitly redefine

the behavior of the ToStringſ…ƀ are using this implementation. Most classes

in C# have their own implementation of the method, which represents

readable and understandable content in text form. For example, converting a

number to text is using the standard format for numbers in the current

Chapter 13. Strings and Text Processing 489

culture. Converting a date to text is also using the standard format for dates

in the current culture.

Using of String.Format(…)

String.Formatſ…ƀ is a static method by which we can format text and

other data through a template (formatting string). The templates contain

text and declared parameters (placeholders) and are used to obtain

formatted text after replacing the parameters with specific values. You can

make a direct association with the Console.WriteLineſ…ƀ method, which

also formats a string through a template:

Console.WriteLine("This is a template from {0}", "David");

How to use the String.Formatſ…ƀ method? Consider an example in order to

clarify this:

DateTime date = DateTime.Now;
string name = "David Scott";

string task = "Introduction to C# book";
string location = "his office";

string formattedText = String.Format(
 "Today is {0:MM/dd/yyyy} and {1} is working on {2} in {3}.",
 date, name, task, location);

Console.WriteLine(formattedText);

// Output: Today is 01.02.2012 and David Scott is working on

// Introduction to C# book in his office.

As it is seen from the example, formatting with String.Format() uses

placeholders (parameters like {0}, {1}, etc.) and accepts formatting strings

(such as :dd.MM.yyyy). It accepts as first parameter a formatting string

containing text with parameters, followed by values for each parameter and

returns the formatted text as a result. More information about formatting

strings can be found on the Internet and in the Composite Formatting

article in MSDN (http://msdn.microsoft.com/en-us/library/txafckwd.aspx).

Note that the exact formatting of the output could slightly vary depending on

your default culture and internationalization.

Parsing Data

The reverse operation of data formatting is data parsing. Parsing of data

(data parsing) means to obtain a value of a given type from the text

representation of this value in a specific format, i.e. converting from text to

some other data type, the opposite of ToString(). For example, from the

http://msdn.microsoft.com/en-us/library/txafckwd.aspx

490 Fundamentals of Computer Programming with C#

text "10/22/2010" we can get an instance of DateTime type, containing the

relevant date.

Often working with applications with graphical user interface requires the user

input to be passed in variables of type string. This way we can work well

with numbers and characters as well as text and dates, formatted in a user’s

preferred way. It is up to the developer’s experience to represent the

expected input data into the right way for the user. The data are then

converted to a specific data type and processed. For example, numbers

can be converted to int or double variables and then participate in

mathematical expressions for calculations.

When converting types, we should not rely only on trusting

the user. Always check the correctness of the input user

data! Otherwise there could be an exception that could

change the normal program logic.

Parsing Numeric Types

To parse a string to a number we can use the Parseſ…ƀ method of the

primitive types. Let’s see an example of parsing a string to an integer value:

string text = "53";
int intValue = int.Parse(text);

// intValue = 53

We can also parse variables of Boolean type:

string text = "True";
bool boolValue = bool.Parse(text);

// boolValue = true

Return value is true, when the passed parameter is initialized (not an object

with null value), and its content is "true" regardless of the casing of letters

in it. For example, any text such as "true", "True" or "tRUe" will set the

variable boolValue to true. If the parameter’s content is "false", no matter

the casing of letters, the return value will be false. In all other cases it throws

FormatException.

In case the passed to the Parseſ…ƀ method value is invalid for the type (e.g.

we pass "John!" when parsing a number), an exception is thrown.

Parsing Dates

Parsing to a date is similar to parsing to a numeric type, but it is

recommended to set a specific date format. Here is an example of how this

can happen:

Chapter 13. Strings and Text Processing 491

string text = "11/11/2001";
DateTime parsedDate = DateTime.Parse(text);
Console.WriteLine(parsedDate);

// 11-Nov-01 0:00:00 AM

Whether the date will be parsed successfully and in what format exactly it will

be printed on the console depends strongly on the current culture of Windows.

In the example, a modified version of the U.S. culture (en-US) is used. If we

want to set a format explicitly, which does not depend on the culture, we can

use the method DateTime.ParseExactſ…ƀ and specify particular formatting

pattern of our choice:

string text = "11/12/2001";
string format = "MM/dd/yyyy";

DateTime parsedDate = DateTime.ParseExact(
 text, format, CultureInfo.InvariantCulture);
Console.WriteLine("Day: {0}\nMonth: {1}\nYear: {2}",

 parsedDate.Day, parsedDate.Month, parsedDate.Year);
// Day: 12
// Month: 11

// Year: 2001

When parsing with an explicitly set format, it is required to pass a specific

culture from which to take information about date format and separators

between days and years. Since we want the parsing not to depend on a

particular culture, we explicitly specify the neutral culture to be used:

CultureInfo.InvariantCulture. To use the class CultureInfo, we must

include the namespace System.Globalization in the beginning of our C#

source code.

Exercises

1. Describe the strings in C#. What is typical for the string type?

Explain which the most important methods of the string class are.

2. Write a program that reads a string, reverse it and prints it to the

console. For example: "introduction"  "noitcudortni".

3. Write a program that checks whether the parentheses are placed

correctly in an arithmetic expression. Example of expression with

correctly placed brackets: ((a+b)/5-d). Example of an incorrect

expression:)(a+b)).

4. How many backslashes you must specify as an argument to the method

Splitſ…ƀ in order to split the text by a backslash?

Example: one\two\three.

492 Fundamentals of Computer Programming with C#

Note: In C# backslash is an escaping character.

5. Write a program that detects how many times a substring is contained in

the text. For example, let’s look for the substring "in" in the text:

We are living in a yellow submarine. We don't have anything
else. Inside the submarine is very tight. So we are drinking
all the day. We will move out of it in 5 days.

The result is 9 occurrences.

6. A text is given. Write a program that modifies the casing of letters to

uppercase at all places in the text surrounded by <upcase> and

</upcase> tags. Tags cannot be nested.

Example:

We are living in a <upcase>yellow submarine</upcase>. We

don't have <upcase>anything</upcase> else.

Result:

We are living in a YELLOW SUBMARINE. We don't have ANYTHING
else.

7. Write a program that reads a string from the console (20 characters

maximum) and if shorter complements it right with "*" to 20 characters.

8. Write a program that converts a given string into the form of array of

Unicode escape sequences in the format used in the C# language.

Sample input: "Test". Result: "\u0054\u0065\u0073\u0074".

9. Write a program that encrypts a text by applying XOR (excluding or)

operation between the given source characters and given cipher code.

The encryption should be done by applying XOR between the first letter

of the text and the first letter of the code, the second letter of the text

and the second letter of the code, etc. until the last letter of the code,

then goes back to the first letter of the code and the next letter of the

text. Print the result as a series of Unicode escape characters \xxxx.

Sample source text: "Test". Sample cipher code: "ab". The result should

be the following: "\u0035\u0007\u0012\u0016".

10. Write a program that extracts from a text all sentences that contain

a particular word. We accept that the sentences are separated from

each other by the character "." and the words are separated from one

another by a character which is not a letter. Sample text:

We are living in a yellow submarine. We don't have anything
else. Inside the submarine is very tight. So we are drinking

Chapter 13. Strings and Text Processing 493

all the day. We will move out of it in 5 days.

Sample result:

We are living in a yellow submarine.
We will move out of it in 5 days.

11. A string is given, composed of several "forbidden" words separated by

commas. Also a text is given, containing those words. Write a program

that replaces the forbidden words with asterisks. Sample text:

Microsoft announced its next generation C# compiler today.
It uses advanced parser and special optimizer for the
Microsoft CLR.

Sample string containing the forbidden words: "C#,CLR,Microsoft".

Sample result:

********* announced its next generation ** compiler today.
It uses advanced parser and special optimizer for the
********* ***.

12. Write a program that reads a number from console and prints it in 15-

character field, aligned right in several ways: as a decimal number,

hexadecimal number, percentage, currency and exponential (scientific)

notation.

13. Write a program that parses an URL in following format:

[protocol]://[server]/[resource]

It should extract from the URL the protocol, server and resource parts.

For example, when http://www.cnn.com/video is passed, the result is:

[protocol]="http"
[server]="www.cnn.com"

[resource]="/video"

14. Write a program that reverses the words in a given sentence without

changing punctuation and spaces. For example: "C# is not C++ and
PHP is not Delphi"  "Delphi not is PHP and C++ not is C#".

15. A dictionary is given, which consists of several lines of text. Each line

consists of a word and its explanation, separated by a hyphen:

.NET – platform for applications from Microsoft

http://www.cnn.com/video/

494 Fundamentals of Computer Programming with C#

CLR – managed execution environment for .NET
namespace – hierarchical organization of classes

Write a program that parses the dictionary and then reads words from

the console in a loop, gives an explanation for it or writes a message

on the console that the word is not into the dictionary.

16. Write a program that replaces all hyperlinks in a HTML document

consisting of … and hyperlinks in "forum" style, which

look like [URL=…]…[/URL].

Sample text:

<p>Please visit our site to
choose a training course. Also visit <a href=
"http://forum.softuni.org">our forum to discuss the

courses.</p>

Sample result:

<p>Please visit [URL=http://softuni.org]our site[/URL] to
choose a training course. Also visit [URL=

http://forum.softuni.org]our forum[/URL] to discuss the
courses.</p>

17. Write a program that reads two dates entered in the format

"day.month.year" and calculates the number of days between them.

Enter the first date: 27.02.2006

Enter the second date: 3.03.2006
Distance: 4 days

18. Write a program that reads the date and time entered in the format

"day.month.year hour:minutes:seconds" and prints the date and time

after 6 hours and 30 minutes in the same format.

19. Write a program that extracts all e-mail addresses from a text. These

are all substrings that are limited on both sides by text end or separator

between words and match the shape <sender>@<host>…<domain>.

Sample text:

Please contact us by phone (+001 222 222 222) or by email at
example@gmail.com or at test.user@yahoo.co.uk. This is not

email: test@test. This also: @gmail.com. Neither this:
a@a.b.

Extracted e-mail addresses from the sample text:

mailto:test.user@yahoo.co.uk

Chapter 13. Strings and Text Processing 495

example@gmail.com
test.user@yahoo.co.uk

20. Write a program that extracts from a text all dates written in format

DD.MM.YYYY and prints them on the console in the standard format for

Canada. Sample text:

I was born at 14.06.1980. My sister was born at 3.7.1984. In
5/1999 I graduated my high school. The law says (see section
7.3.12) that we are allowed to do this (section 7.4.2.9).

Extracted dates from the sample text:

14.06.1980

3.7.1984

21. Write a program that extracts from a text all words which are

palindromes, such as ABBA", "lamal", "exe".

22. Write a program that reads a string from the console and prints in

alphabetical order all letters from the input string and how many

times each one of them occurs in the string.

23. Write a program that reads a string from the console and prints in

alphabetical order all words from the input string and how many

times each one of them occurs in the string.

24. Write a program that reads a string from the console and replaces every

sequence of identical letters in it with a single letter (the repeating

letter). Example: "aaaaabbbbbcdddeeeedssaa"  "abcdedsa".

25. Write a program that reads a list of words separated by commas from the

console and prints them in alphabetical order (after sorting).

26. Write a program that extracts all the text without any tags and

attribute values from an HTML document.

Sample text:

<html>
 <head><title>News</title></head>

 <body><p>Software
 Universityaims to provide free real-world practical
 training for young people who want to turn into

 skillful software engineers.</p></body>
</html>

Sample result:

496 Fundamentals of Computer Programming with C#

News
Software University aims to provide free real-world
practical training for young people who want to turn into

skillful software engineers.

Solutions and Guidelines

1. Read in MSDN or refer to the start of this chapter.

2. Use StringBuilder and for (or foreach) loop.

3. Use counting of the brackets: For an opening bracket increase the

counter by 1 and for closing bracket decrease it by 1. Watch the counter

not to become a negative number and always ends with 0.

4. If you do not know how many slashes you must use, try Splitſ…ƀ with

an increasing number of slashes until you reach the desired result.

5. Reverse the casing of letters in text to small and search the given

substring in a loop. Remember to use IndexOfſ…ƀ with a start index in

order to avoid infinite loop.

6. Use regular expressions or IndexOfſ…ƀ method for opening and closing

tag. Calculate the start and end index of the text. Change the text in all

capital letters and replace the entire substring opening tag + text +

closing tag with the text in uppercase.

7. Use the PadRightſ…ƀ method from the String class.

8. Use format string "\u{0:x4}" for the Unicode character code for each

character of the input string (you can get it by converting char to

ushort).

9. Let the cipher cipher consists of cipher.Length letters. Iterate through

all letters in the text and encrypt the letter at position index in the text

with cipher[index % cipher.Length]. If you have a letter from the

text and letter from the cipher, we can perform XOR operation between

them by transforming in advance the two letters into numbers of type

ushort. We can print the result with "\u{0:x4}" format string.

10. First split the sentences from each other by using the Splitſ…ƀ

method. Then make sure that each sentence contains the searched

word by searching for it as a substring with IndexOfſ…ƀ and if you find it

check whether there is a separator (character, which is not a letter or

start / end of the string) on the left and on the right of the found

substring.

11. First, split the forbidden words with the method Splitſ…ƀ in order to

get them as an array. For each forbidden word, iterate through the text

and search for an occurrence. If a forbidden word is found, replace it

with as many asterisks as letters contained in the forbidden word.

Chapter 13. Strings and Text Processing 497

Another, easier approach is to use RegEx.Replaceſ…ƀ with a suitable

regular expression and a suitable MatchEvaluator method.

12. Use appropriate formatting strings.

13. Use a regular expression or search for the respective splitters – two

slashes for a protocol and one slash as a separator between the server

and the resource. Test the special cases like missing parts of the URL.

14. You can solve the problem in two steps: reverse the input string;

reverse each word in the result string.

Another interesting approach is to split the input text by punctuation

marks between words, in order to get just the words of the text and then

split by the letters to get the punctuation marks of the text. Thus,

given a list of words and a list of punctuation marks between them, you

can easily reverse the words, preserving the punctuation marks.

15. You can parse the text by splitting it by the new line character, then a

second time by the "-" character. The most appropriate way to record the

dictionary is in a hash table (Dictionary<string, string>), which will

provide a quick search for a given word. Read on the Internet for hash-

tables and the Dictionary<K,T> class. You might also check the chapter

“Dictionaries, hash-Tables and Sets”.

16. Using a regular expression is the easiest way to solve the task.

If you still choose not to use regular expressions, you can find all

substrings that start with "<a href=" and end with "" and within

them to replace "" with

"]" and then "" with "[/URL]".

17. Use the methods in the DateTime structure. For parsing the dates you

can use splitting by "." or parsing with the DateTime.ParseExactſ…ƀ

method.

18. Use the DateTime.ToString() and DateTime.ParseExact() methods

with suitable formatting strings.

19. Use RegEx.Matchſ…ƀ with an appropriate regular expression.

If you want to solve the task without regular expressions, you will need

to process the text letter by letter from start to finish and process the

next character, depending on the current mode, which can be one of

OutsideOfEmail, ProcessingSender or ProcessingHostOrDomain. If a

separator or the end of the text is reached and host or domain is

processed (mode ProcessingHostOrDomain), then you have found an e-

mail, otherwise potentially a new e-mail is starting and mode must be

changed to ProcessingSender. If @ character is reached in

ProcessingSender mode, ProcessingSender is switched on. When

meeting letters or dot in ProcessingSender or ProcessingHostOrDomain

mode, they ate accumulated in a buffer. You can look at all possible

498 Fundamentals of Computer Programming with C#

groups of characters encountered respectively in each of the three modes

and process them appropriately. We come to something like a final

automaton (state machine), which detects e-mail addresses. All found e-

mail addresses must be checked whether they have nonempty recipient,

host, and domain with a length between 2 and 4 letters, as well as not

beginning or ending with a dot.

Another easier approach to this problem is to split the text by all

characters that are not letters and dots and to verify that the extracted

"words" are valid e-mail addresses. Check can be done through an

attempt to split them to nonempty parts: <sender>, <host>, <domain>,

meeting the listed conditions.

20. Use RegEx.Matchſ…ƀ with an appropriate regular expression.

Alternative option is to implement a state-machine that has several

states OutOfDate, ProcessingDay, ProcessingMonth, ProcessingYear

and while processing the text letter by letter to move between states

according to the current letter which you are processing. As in the

previous task, you can extract all "words" from the text in advance and

then check which ones correspond to the date template.

21. Split the text into words and check whether each word is a palindrome.

22. Use an array of integers int[65536], which will keep how many times

each letter occurs. Initially, all array elements are zeros. After

processing the input string letter by letter you can write in the array how

many times each letter occurs. For example, if you meet the letter 'A',

the number of occurrences in the array index of 65 (Unicode code 'A') will

increase by one. Finally, all non-zero elements (convert array index to

char, to get the letter) and their number of occurrences can be printed

with one scan of the array.

23. Use a hash table (Dictionary<string, int>) which keeps how many

times each word occurs in the input string. Read on the Internet for class

System.Collections.Generic.Dictionary<K,T>. With iteration through

words you can accumulate information for each word occurrences in the

hash table and with hash table iteration you can print the result.

24. You can scan text from left to right and when the current letter is

identical with the previous one, miss it, but otherwise concatenate it in

StringBuilder.

25. Use the static method Array.Sortſ…ƀ after parsing the input text into

array of strings.

26. Scan the text letter by letter and at all times keep in a variable

whether currently there is an opening tag which has not been closed or

not. If you have "<", enter in "opening tag" mode. If you have ">", exit

the "opening tag" mode. If you have a letter, add it to the result only if

the program is not in "opening tag". After closing a tag you can add a

space in order not to "stick" the text before and after the tag.

